ABSOLUTELY EASY PYTHON FUNCTIONAL PROGRAMMING TUTORIAL TO BECOME A PRO DEVELOPER IN 2021

 

Here and there, python is everywhere!

Now, Learning Python Functional Programming is just a scroll down away! All you need to do is sit down and read everything carefully. Practice this and become a pro python developer in 2021.

Informative Fact: Python is now the third most popular programming language in the world, with a usage rate of 12.21% and in February 2020, more than 65,000 developers took Stackoverflow’s annual developer survey. Isn’t that amazing?

So, What is functional programming in Python?

A problem is decomposed into a series of functions in purely Functional programming.

Functions in python are called first-class citizens. Which means that their characteristics match. These first-class functions are handled as if it is a variable. When a first-class variable is passed to another function as a parameter, it can be stored in a data structure or can be returned from functions.

It is considered the opposite side of object-oriented programming language. Object-oriented languages work really well when you have a particularly fixed set of operations. Objects are small capsules that contain some internal state as well as a set of method calls that allow you to alter it, and programs are made up of the correct set of state changes.

The well-known functional programming language also has a Machine learning family including OCaml, Standard ML, etc. Python programs are written in the functional language style which doesn’t avoid all I/O or all assignments; instead of that, they have a functional-looking interface but use non-functional functionality internally.

Here, in Functional Programming in python, a good example you can take is: The implementation of a function will also use local variable assignments, but it will not change global variables or have any other side effects.

It may seem like Functional Languages can be tough to work with, But, why are you instance saying that learning the functional language would be easy?

Ikr! This is not as tough at all; All you have to do is follow every step in this article till the end.

Here, we are going to talk about how you can actually approach the functional programming paradigms in python. Firstly, you need to understand what Pure Functions are.

Let’s roll!!!

PURE FUNCTIONS

It is just a function that does not have a side effect, and it returns the exact same thing every single time, you give it the same inputs. Thus, every time you call these functions with the same input, it always gives you the same output and it affects nothing else outside of it.

Now, this is a bit theoretical of what pure functions are. But, the easiest way to understand the pure function is to take some examples and to write some. Examples of pure functions are pow()strlen()sqrt()etc.

There are many practical advantages of using functional programming paradigm, that includes the following:

EASY DEBUGGING

Pure functions have very few factors affecting them which allows you to find the bugged section easily. Immutable data makes it easy to find the values set for the variable. 

MODULARITY

Pure function is easier to reuse the same code in other contexts because functions do not depend on any external state or variable. This function will only complete a single operation at a time to confirm that the same function without importing external code.

LAZY EVALUATION

In the functional programming paradigm; only evaluates computations when they are needed. This allows one to reuse results from previously saved runtime and computations.

PARALLEL PROGRAMMING PARADIGM

Since immutable variables minimize the amount of change within the program, the functional programming paradigm makes it easier to construct parallel programs. Each function just attempts to coordinate with user input, and the program’s state will largely remain the same!

INTENSIFIED READABILITY

Since each function’s action is immutable and separate from the program’s state, functional programs are simple to interpret. As a consequence, you can always guess what each function would do just by looking at its name!

ITERATORS

An iterator is a form of object that represents a stream of data and it will return each entity one by one. It must have a method called __next__(), which takes no arguments and it will always return the next element of the stream. If the stream does not contain any objects, __next__() should throw the StopIteration exception on the spot. It does not have to be finite; in fact, writing an iterator that generates an infinite stream of data is perfectly rational.

The functional style iter() takes an object and attempts to return an iterator that will contain the object’s contents or items, throwing a TypeError if the object does not really allow iteration. Iteration is supported by several functional data types, the most common of which are lists and dictionaries. If you can obtain an iterator for an object, it is said to be iterable.

Here, You can manually experiment with the iteration interface.

To read more Click Here!

Comments